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Singular integral equations of the theory of elasticity are studied for a piece-
wise homogeneous medium with the same Poisson’sratio. It is shown that a
solution can be obtained using the method of successive approximations,

Use of the potential method for the fundamental problems of the theory of
elasticity leads to singular integral equations of second kind [1], In the case
of the second intemal and external problerns, and of the first intemal problem,
the spectral properties of the integral operators allow the use of the method of
successive approximations to obtain a solution,

1, Consider an elastic body D occupying a bounded part of the space  R? ,with
boundary &, which isa Liapunov surface, An inclusion D, bounded by a Liapunov
surface Sy (S1 ) S2 = &) exists within D, We denote the part of D bounded
by the boundary §, U S, by D;. Letthe Lamé constants of the body Dy be A,
and p;. We assume that the Poisson's ratios are equal to each other, therefore we
have Ay/Ay = p/p, = B. The direction of the normal n on §; pointing away
from D, is assumed positive, The displacement vector of the elastic medium u and

D is a solution of the boundary value problem

Au -+ (1 —20)tgrad diva =0, x = D,, D, (1.1)

[(Tpult = (x), xe= Sy ut (x) —u" (x) =r (x), x5,

[Thaul* — [Tpul” =g (x), x = S,

Tpu = 2u;0u/dn -+ A div u 4 p; [n-rot u]
Here o isthe Poisson's ratio, 7,;u is the limiting value of the stress operator at
the surface with the normal n, and the plus and minus indices indicate whether the
limiting value is determined along the positive or negative direction of the normal,
respectively,

Since the substitution w == u, — v, where v is a solution of the first internal
problem for D, , reduces the problem (1,1) to that with r () =0, weshall
assume that r {z) = 0. The functions f and g will be regarded as the elements
of the Hilbert spaces H, and H, of vector functions defined on Sy and  §,,with
the scalar product

3
(%P1, (Pz)Hi = S 2 ?/ 9.’ dS
g j=1

Taking tinto account the form of the operator  Ty;, we reduce the second con-
dition on §, in(1.1) to the form

{Tpult — 8 [Thul~ = Bg(x) (1.2)
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We shall seek the solution in the form of a potential of a simple layer

u(x) = § V(x,y) 9 (y)d§S+§V(x, Y) @ (¥) 4,8 (1.3)

Here V (x,y) is the Kelvin — Somigliano matrix

Vx, %) ={Vy (X,Y)}?, k=1

Vic (z, ) = (16 ap; (1 — o)) {8 — 4oy 8/ | x — ¥ | +
(W — ) ok — ) | x —y [

The function (1. 3) satisfies the Lamé differential equationsin Dy lJ D, and
fulfils, by virtue of the continuity of the potential of a simple layer, the first condit-
ionon §, in(l,1), The second condition on &z (condition (1,2))leads to the
equation

N » i —
w0 +a\ 7,V 0y @, +a§ TV (% 9) ¢ ) 4,8 =52 g (9 (L)
S, 1

where o= (1 —B)/ (14 B). For the principal contact problem in which the elast-
ic body fills the whole space, the above equation was given in [1] where the converg~
ence of the method of successive approximations for (1,4) was also shown,

The equation obtained from the condition on §y has the form

91(2) +§ T VENGMLS + TV namas=te (19
1 Sa

Let us consider the system (1.4), (1.5) of integral equations, introducing the foll-
owing notation;

K@= sS ThwWixyewds, xe8;
i

ko= { TV yremas, xes; ii=12
8

T“= {(Ta)ij}y (Ta)1j=K1jv (Ta)23~=0.K2}', l = 1)2

To* = {TMih T =Ki  (To) = 0Ky*

Ta=T, @=col(;¢y), Fo=rcol(fi(1—a)g/2)

Here a prime denotes transposition and interchange of arguments, col (,, y,) isa
vector assurning the value y; on the surface §;, and T, * is an operator conjug-
ateto T, in H, The operators K;; : H; — H; are singular integral operators and
Ky ci—1, 1k (here and henceforth I (4) denotes the spectral set of the
operator A). The operators Kjij (i=F;) are completely continuous from H; into
H;.

Now we can write the system (1.4), (1, 5) in the form

I+ T)o=F, (1. 6)

where I is the identity operator. We note that when = «1 (T, =T), the sys-
tem (1, 6) corresponds to the second fundamental problem for a doubly connected body
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bounded by the surface  § = &§; U S, [1L

adine is equal to
A RGIAAS 4122 As MU 2]

unity (p (Ky) = 1), the operator I + a (K,,) has a bounded inverse on H, for
any ae (—1,1). Wrtingnow ¢, from(1,4)in terms of ¢, and substituting it
into {(1,5), we obtain

@+ K@+ Ry =+ (0 + aKp) (1 — a)/2 (2.1

2 Letuss 1dy he equation I1 8}, Since the m“ctxa‘ T

dig Liwh e S aws LIRS S

Here R is an operator, containing X, and K, as factors and therefore fully con-
tinuous. Since the operator 7 4 Ky; : H; — H; is a Noetherian operator with zero
index, it follows that the Fredholm alternative holds for (2, 1) as well as for (1, 6), the
latter holding by virtue of the equivalence of the transformation which has been carri-
ed out (the boundedness of (7 -+ aKg)™),

Let W (x) = a + [b-x] {& = (ay, a,, a3), b = (by, by, by) be sets of arbitrary const-
ants and let square brackets denote a vector product) be the rigid displacement vector
defined for all x = R3 ¢; () = ¥ (x) for x= §; is the trace of W (x) on the
surface S;-

Consider the vector ¥, (x) = col (1 —a) $,/2; ¢,). Let ¥,;(G=1,2,..6
be linearly independent functions of ¥, constructed with the help of six, linearly in-
dependent vector constants a, b. Dn'ect substitution confirms that {¥;}; jel,2,..6 <

NI +T,* and {col (0; 1[:2]*)}].:1,2,_”6;N (al 4Ty *) for a=[—1,1] (here and
henceforth  {®;};,_, , , denotes the linear envelope of the vectors D;, N(4)
is the subspace of zeroes of the operator  4), We shall show that " {col (0;
Poi)tj—1,2,...6 = N(—I+T*). Indeed, theequation (—I4T)e=F is
equivalent to the second fundamental boundary value problem of the theory of elastic-
ity (for a body consisting of two parts lying, respectively, within S, and outside S,)
which has a solution if and only if F e {col (05 ‘l’,,;)}r_1 2,..s Consequently we
have {col (0; ¥y)liyo o= (—I+TDH=N(—1I+ o)L,

Consider the space H° o= H:($, @)y, = ($oj Py, =0 = 1, 2..6}.
Direct substitution shows that for a = 1

= {col (0: ¥yl 0,...6 N (Wolirs,..60 ToH CH

Let us consider the contraction T,° of the operator T, onto H°. We shall
show that Z(T°= —{,1. We recall that the points —1, 1< = (T) are isolated
pointsin Z (TYC [—1,1] [}. Let ge=N{I4T° and ¢=H°, Thenge
NI+TYNONT+TYE Since the pole —1 of the resolvent of the operator T
is simple [1], it follows that ¢ = 0. Letus now assume that — @+ Te =0 and
¢ = H° Then we have simultaneously ¢ = N (— 7+ T) and o= N (— I+

T#)- and ¢ =0 by virtue of the fact that the pole 1 of the resolvent of the op-
erator T issimple, i,e., 1 & Z (T°).

Thus I (T C[—41+ 6,1 —8] forsome §&>0, andthis implies that

p (T° <1, i.e. anorm exists, equivalent to the initial norm, in which JT°}, =
g <t.
At this stage we note that for any F = col (Fy; Fy) & H we have

| T, Flg <l KuF1 + KuFalg, + o] KuF: + KnFilg, <|TF g



1222 M. L Lazarev and P. L Perlin

F:omomis, by virtue of T,H° (C H® wehave forany F e H° and any integral
n>U,

1T F <[ TTEAF <. < TF | < e T'F Jly < g™ [ F s

where ¢ is a constant entering the condition of equivalence of the norms, From this
it follows, that the series

S (T F
)

converges on the norm forany F < H°, let Fe (¥}, .. Sice (al+
THF &N (@l -T2 < {eol (0; $ei)liy g, 60 thenfor ash i (@l + T F = A°
and the series

N (T @l +THF
h==p

converges, We can now confirm that when o e [—1, 1) , the function

1 o
*=1"4a [F“; (—Ty)* (@l +Ty) Fol (2.2
()

satisfies the equation (1,6), Thus when Foe= (¥, ), , o, asolution of (1.6)
exists, This implies that we have, by virtue of the Noetherian character of the op-
erator I +T,, {(¥gitjme,..6 =N +Tg*).

The sufficiency of the condition (f, %)) + (& $) (= 1,2, ..., 6) (which
is equivalent to F e {¥,;lk, , ) for the solvability of the initial boundary value
problem, has been shown in {1}, The iterative process

Py = (@ +THF, Qg =— To®p-1y *= 1,2,...

yields the series appearing in (2. 1), and the singular integrals appearing in T,
can be computed at each step using the procedure given in [2], The results obtained
can be applied to other fundamental problemns for a piecewise homogeneous medium
with the same value of the Poisson'sratio,

By assuming in the formulation of the problem that V{x —y)=1/|x—y| (%
©1s P30/, g are scalar functions), we amive at the Neumann problem for the
Laplace's operator for a composite region with a given gradient discontinuity at the
boundary. The results also hold in this case,
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